Abstract Submitted for the DAMOP07 Meeting of The American Physical Society

On the possibility of considering the fullerene shell C60 as a conducting sphere MIRON AMUSIA, Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel, ARKADIY BALTENKOV, Arifov Institute of Electronics, Tashkent, 700125, Uzbekistan — It has been shown that the fullerene shell in the static electric field behaves as a set of separate carbon atoms, rather than a conducting sphere [1]. We calculate the effective electric field $\mathbf{E}_{eff}(\omega)$ at the fullerence center when the external $\mathbf{E}(\omega)$ with frequency ω is applied to C₆₀. The modification of the external field comes from the effect of the dynamic dipole polarizability $\alpha_d(\omega)$ of the fullerene C₆₀ expressed via its total photoionization cross-section $\sigma(\omega)[2]$. We calculate the ratio $\eta(\omega) \equiv \mathbf{E}_{eff}(\omega)/\mathbf{E}(\omega)$ and then investigate whether $\eta(0)$ is equal to zero. The equality of the ratio $\eta(\omega)$ to zero in the static limit $\omega \to 0$ is the critical condition being general for a conducting body with any form. For C_{60} this ratio is $\eta(0) \approx 2$, i.e. C₆₀ is not a hollow metallic sphere. It is shown that at any ω the frequency dependence of the ratio of the fields $\eta(\omega)$ at the center of the C_{60} molecule and outside it has nothing to do with $\eta(\omega)$ for the conducting sphere [1], which is additional evidence that the C_{60} shell is strongly non-metallic. [1] J.-P. Connerade and A. V. Solov'yov, J. Phys. B 38, 807 (2005) [2] J. Berkowitz, J. Chem. Phys. 111, 1446 (1999).

> Miron Amusia 1Racah Institute of Physics, The Hebrew University, Jerusalem 91904, Israel

Date submitted: 05 Feb 2007

Electronic form version 1.4