Abstract Submitted for the DAMOP07 Meeting of The American Physical Society

Interpretation of black body radiation as a decay process CLARENCE A. GALL, Division de Postgrado de Ingenieria, Universidad del Zulia, Apartado # 98, Maracaibo, Zulia, Venezuela — The treatment of black body radiation as a decay process with the wavelength (λ) as the time marker, leads to an apportioning function (D_{λ}) that distributes the total thermodynamic Stefan-Boltzmann emitted intensity (I) over the entire wavelength range (Clarence A Gall, BAPS, March Meeting 2007, Denver, CO). The resulting distribution function $\left(I_{\lambda} = ID_{\lambda} = \sigma \frac{T^{6}}{b^{2}} \lambda e^{-\frac{T}{b}\lambda}\right)$ gives the Stefan-Boltzmann law on integration over the same interval. Differentiation of I_{λ} produces Wien's displacement law as the condition for the wavelength at maximum emitted intensity (λ_m) . Substitution of λ_m in I_{λ} yields the maximum emitted intensity (I_{λ_m}) as being proportional to T^{5} . Hence I_{λ} satisfies exactly the three known empirical laws of black body radiation and fulfils Einstein's hope for a solution of the radiation problem without the use of light quanta. Finally the replacement of $\frac{T}{b}$ with a single constant G simplifies the distribution function so that $I_{\lambda} = \sigma_G G^6 \lambda e^{-G\lambda}$ where $\sigma_G = b^4 \sigma$. Consequently Gdefines a new temperature scale with units of reciprocal wavelength that unifies the thermodynamic and colour scales.

> Clarence A. Gall Division de Postgrado de Ingenieria, Universidad del Zulia Apartado # 98, Maracaibo, Zulia, Venezuela

Date submitted: 12 Feb 2007

Electronic form version 1.4