Abstract Submitted for the DAMOP07 Meeting of The American Physical Society

Cyanoacetylene-doped ortho-hydrogen and para-hydrogen clusters studied using rotational spectroscopy JULIE MICHAUD, WOLFGANG JÄGER, Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada — A high-resolution Fourier transform microwave spectrometer was used to measure the rotational spectra of the $orthoH_2$ – HCCCN and $paraH_2$ – HCCCN dimers as well as larger $(orthoH_2)_N$ – HCCCN and $(paraH_2)_N$ – HCCCN van der Waals clusters (N=2 and greater). To generate the clusters, low concentrations of HCCCN and H_2 (normal or enriched $paraH_2$) in helium are used at pressures up to 70 atm. The helium supersonic jet expansion into the spectrometer cavity/sample cell produces a collision free environment where the clusters are stabilized and studied. Varying the backing pressure, sample concentrations and/or nozzle temperature can control cluster size. The doped $paraH_2$ clusters are of particular interest because $paraH_2$ is suspected to exhibit the bulk property of superfluidity, similar to 4 He. The study of the successive solvation of HCCCN with H_2 molecules may provide evidence for superfluidity in doped H_2 clusters.

Julie Michaud Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada

Date submitted: 02 Feb 2007 Electronic form version 1.4