Abstract Submitted for the DAMOP07 Meeting of The American Physical Society

Polarizability of Kr⁶⁺ from High-L Kr⁵⁺ Fine Structure Measurements¹ S.R. LUNDEEN, Colorado State University, C.W. FEHREN-BACH, Kansas State University — The transition between n=55 and n=109 Rydberg levels of Kr⁵⁺ has been studied at high resolution using the RESIS method. Resolved excitation of L = 6, 7, 8, and 9 levels in n=55 lead to a determination of the fine structure energies of these levels. Interpreted with the long-range polarization model, this leads to a measurement of the dipole polarizability of Zn-like Kr⁶⁺, $\alpha_d = 2.53(2)$ a₀³. Considerations involved in deducing a value of the quadrupole polarizability from the data and factors contributing to the signal and noise levels in measurements of this type will be discussed.

¹Supported by the Chemical Sciences, Geosciences, and Biosciences Division of the Office of Basic Energy Science, U.S. Department of Energy.

S.R. Lundeen Colorado State University

Date submitted: 01 Feb 2007 Electronic form version 1.4