Abstract Submitted for the DAMOP07 Meeting of The American Physical Society

 $2p_{3/2}^{-1}3x^{-1}$ - $3x^{-1}3d^{-1}$ X-Ray satellites in the $L\alpha_1$ spectra of 4d transition elements SURENDRA POONIA, Research Scientist (Atomic and X-Ray Spectroscopy) — The X-ray satellite spectra arising due to $2p_{3/2}^{-1}3x^{-1}-3x^{-1}3d^{-1}$ (x \equiv s, p, d) transition array, in elements with Z = 40 to 48, have been calculated, using available Hartree-Fock-Slater (HFS) data on $1s^{-1}$ - $2p^{-1}3x^{-1}$ and $2p_{3/2}^{-1}$ - $3x^{-1}$, $3x^{-1}$ Auger transition energies. The relative intensities of all the possible transitions have been estimated by considering cross - sections for the Auger transitions simultaneous to a hole creation and then distributing statistically the total cross sections for initial two hole states $2p_{3/2}^{-1}3x^{-1}$ amongst various allowed transitions from these initial states to $3x^{-1}3d^{-1}$ final states by Coster-Kronig (CK) and shake off processes. Each transition has been assumed to give rise to a Gaussian line and the overall spectrum has been computed as the sum of these Gaussian curves. The calculated spectra have been compared with the measured satellite energies in L α_1 spectra. Their intense peaks have been identified as the observed satellite lines. The peaks in the theoretical satellite spectra were identified as the experimentally reported satellites α_3 , α_4 and α_5 , which lie on the high-energy side of the L α_1 dipole line.

> Surendra Poonia Research Scientist (Atomic and X-Ray Spectroscopy)

Date submitted: 01 Feb 2007 Electronic form version 1.4