Abstract Submitted for the DAMOP07 Meeting of The American Physical Society

Isotopic tuning of scattering lengths of ultracold Yb atoms PAUL JULIENNE, NIST, R. CIURYLO, Nicolas Copernicus University, M. KITAGAWA, K. ENOMOTO, K. KASA, Y. TAKAHASHI, Kyoto University — The species Yb has 5 stable spinless bosonic isotopes and two fermionic ones, 171 Yb with I=1/2 and 173 Yb with I=5/2. Two-color photoassociation spectroscopy of ultracold Yb atomic gases has been used to measure the binding energies of 7 J=0 and 5 J=2bound states near the dissociation threshold of the homonuclear molecular dimers 170 Yb₂, 171 Yb₂, 172 Yb₂, 173 Yb₂, 174 Yb₂, and 176 Yb₂. Fitting 3 binding energies from 174 Yb₂ and 176 Yb₂ determines the C₆ and C₈ van der Waals constants and the absolute number of bound states in the single ground state potential. Our mass-scaled model then accurately predicts the binding energies of the other 9 measured levels, and determines accurate scattering lengths of all 28 different isotopic combinations, including 168 Yb. As the reduced mass varies from 168/2 to 176/2, the scattering lengths vary through a complete cycle from $-\infty$ to $+\infty$. Thus, scattering length can be widely "tuned" by varying isotopic composition. Since all 6 species from mass 170 to 176 can be brought to the quantum degenerate regime, this gives a wide variety of mixtures for new studies of ultracold quantum gases and lattices.

> Paul Julienne NIST

Date submitted: 05 Feb 2007

Electronic form version 1.4