DAMOP07-2007-000324

Abstract for an Invited Paper for the DAMOP07 Meeting of the American Physical Society

Experiments with Ultracold KRb and \mathbf{Rb}_2 Molecules¹

PHILLIP GOULD, University of Connecticut

Ultracold molecules are of interest for a number of applications including ultracold chemistry, novel quantum degenerate systems, precision spectroscopy, and quantum computation. Photoassociation (PA) of ultracold atoms is a useful means of producing various diatomic molecular species at sub-mK temperatures. Heteronuclear systems have garnered particular attention because of their permanent electric dipole moments. We use PA to form both KRb and Rb₂, typically in high vibrational levels of either the singlet ground state $(X^{-1}\Sigma^+)$ or lowest-lying triplet state $(a^{-3}\Sigma^+)$. In KRb, a novel depletion spectroscopy is used to detect the molecules with both vibrational (v) and rotational (J) resolution. Monitoring the population of a specific X-state vibrational level v'' with pulsed two-photon ionization, we observe depletion when a cw laser drives a bound-bound transition from (v'', J'') to an excited rovibrational level. This high-resolution spectroscopy is helping to guide Raman schemes to transfer ultracold molecules from high-v'' levels, produced by PA, to the absolute ground state, which is stable against inelastic collisions. We also use this depletion spectroscopy to precisely measure the ground-state dissociation energy of KRb. In Rb₂, we observe the effects of resonant coupling between excited 0_u^+ states on ground-state molecule formation. We photoassociate to 0^+_u levels below the $5S + 5P_{1/2}$ limit and state-selectively detect the resulting ground-state molecules by two-photon ionization. In the absence of resonant coupling between the two 0^+_u potentials (converging to the $5S + 5P_{1/2}$ and $5S + 5P_{3/2}$ limits), the excited molecules would spontaneously decay overwhelmingly to the highest v'' levels, bound by < 1 cm⁻¹. The effect of resonant coupling is to provide selected 0_u^+ wavefunctions with increased short-range amplitude, which enhances their decay to more deeply bound levels. Progress towards optical trapping and collisional studies of Rb₂ will also be reported.

¹This work was done in collaboration with D. Wang, J.T. Kim, H.K. Pechkis, Y. Huang, C.P. Koch, E.E. Eyler, and W.C. Stwalley, and supported by the NSF.