Effects of resonant coupling on the formation of ultracold 85Rb$_2$ molecules

H.K. PECHKIS, D. WANG, Y. HUANG, E.E. EYLER, P.L. GOULD, W.C. STWALLEY, Physics Department, University of Connecticut, USA, CHRISTIANE P. KOCH, Freie Universität Berlin, Institut für Theoretische Physik, Germany — We have studied the effect of resonant electronic state coupling on the formation of ultracold ground-state 85Rb$_2$. The ultracold Rb$_2$ are formed by photoassociation (PA) to the 0^+_u state converging to the $5S + 5P_{1/2}$ limit, followed by radiative decay into high vibrational levels of the ground state, $X^1\Sigma^+_g$. The populations of high-v levels of the X state are monitored by resonance-enhanced two-photon ionization through the $2^1\Sigma^+_u$ state. We find that the populations of vibrational levels $v''=112-116$ are far larger than can be accounted for by the Frank-Condon factors for $0^+_u \leftarrow X^1\Sigma^+_g$ transitions. Further, the ground-state molecule population exhibits oscillatory behavior as the PA laser is tuned through a succession of 0^+_u state vibrational levels. Both of these effects explained by a new calculation of transition amplitudes that includes the resonant character of the spin-orbit coupling of the two 0^+_u states converging to the $5P_{1/2}$ and $5P_{3/2}$ limits. The resulting enhancement of more deeply bound ground-state molecule formation will be useful for future experiments on ultracold molecules. We also present the progress toward forming 85Rb$_2$ by photoassociation in an optical dipole trap using a CO$_2$ laser. This work is supported by the NSF.

H. K. Pechkis
Physics Department, University of Connecticut, USA

Date submitted: 06 Feb 2007