Current status of the measurement of the anapole moment in francium.1 ADRIAN PEREZ GALVAN, JQI, University of Maryland, DONG SHENG, YANTING ZHAO, LUIS OROZCO, FRTRAP COLLABORATION2 — We present the new generation experimental setup of the FrTRAP collaboration to measure the anapole moment in a chain of francium isotopes. The experiment will interface with the ISAC radioactive beam facility at TRIUMF. Our experimental design combines a double chamber currently under test with stable rubidium. The design permits both microwave and optical parity non-conservation measurement techniques. The nuclear anapole moment is a parity violating moment that arises from the nuclear weak interaction and can be probed with an electromagnetic interaction between an electron and the nucleus. Its measurement is a unique probe for neutral weak interactions inside the nucleus. Measurements in a chain of francium isotopes offer the unique opportunity of probing the electroweak interaction as a function of nuclear distribution.

1Supported by NSF(USA), NSERC (Canada), and NRC (Canada).
2S. Aubin(W&M), J.A. Behr, K.P. Jackson, M.R. Pearson(TRIUMF), V.V. Flambaum(New South Wales), E. Gomez(SLP), G. Gwinner(Manitoba), G.D. Sprouse(SB)