Abstract Submitted for the DAMOP07 Meeting of The American Physical Society

Ultra-high resolution spectroscopy with a ⁸⁷Sr lattice clock GRETCHEN K. CAMPBELL, SEBASTIAN BLATT, MARTIN M. BOYD, AN-DREW D. LUDLOW, TANYA ZELEVINSKY, SETH M. FOREMAN, THOMAS ZANON, JUN YE, JILA, NIST, and University of Colorado — We have performed ultra-high resolution spectroscopy using a ⁸⁷Sr optical lattice clock. With the addition of a small magnetic bias field, the high line Q of the ${}^{1}S_{0}$ - ${}^{3}P_{0}$ clock transition has allowed us to resolve the nuclear-spin sublevels, and make a precision measurement of the differential Landé g-factor between the ${}^{1}S_{0}$ and ${}^{3}P_{0}$ states arising from hyperfine mixing of the ${}^{3}P_{0}$ with the ${}^{3}P_{1}$ and ${}^{1}P_{1}$ states. Breaking the nuclear-spin degeneracy allows for a better characterization of systematic errors, and we have made measurements of these nuclear-spin related effects including the linear Zeeman shift and tensor polarizability. The ability to directly manipulate individual nuclear-spin levels also makes this an attractive system for quantum information. Recent progress towards an all optical comparison of atomic clocks, including the construction of a new strontium three-dimensional optical lattice will also be presented.

Gretchen K. Campbell JILA, NIST, and University of Colorado

Date submitted: 02 Feb 2007

Electronic form version 1.4