Abstract Submitted for the DAMOP07 Meeting of The American Physical Society

A Measurement of the s-Wave Scattering Length in a ^7Li Bose-Einstein Condensate D. DRIES, M. JUNKER, J. HITCHCOCK, C. WELFORD, Y.P. CHEN, R.G. HULET, Department of Physics and Astronomy and Rice Quantum Institute, Rice University — The s-wave scattering length, a_s , parameterizes the effective interatomic interactions in a Bose-Einstein condensate (BEC). The sign and magnitude of a_s have important consequences for the observable properties of the condensate and, consequently, a_s needs to be accurately known in order to correctly interpret many experimental results. In our experiment, we create an optically trapped ^7Li BEC in the $F=1, m_F=1$ hyperfine state. Using a Feshbach resonance, we are able to change the value of a_s by nearly two orders of magnitude over the magnetic field range of 507-730 G. We extract a_s from absorption images of the condensate by fitting to the Thomas-Fermi radius. Furthermore, the condensate suddenly disappears at fields above 730 ± 1 G, placing a lower bound on the location of the Feshbach resonance.

¹Supported by the NSF, ONR, and the Welch and Keck Foundations.

Dan Dries

Date submitted: 05 Feb 2007 Electronic form version 1.4