Sinusoidal Regge Oscillations from Short Lived Resonances1

D. SOKOLOVSKI, The Queen’s University of Belfast, UK, Z. FELFLI, A.Z. MSEZANE, Clark Atlanta University, SOKOLOVSKI COLLABORATION, FELFLI/MSEZANE TEAM — It is well known that a resonance with a large angular life can produce sharp Breit-Wigner peaks in the energy dependence of integral cross sections \cite{1,2}. Here we show that a short-lived resonance whose angular life is of order of one full rotation may produce a different kind of contribution to the integral cross section. This contribution has a sinusoidal form and its frequency is determined by the rotational constant of the complex. As one of the examples, we analyze the Regge oscillations observed in numerical simulations of the $F + H_2(v = 0, j = 0, \Omega = 0) \rightarrow FH(v' = 2, j' = 0, \Omega' = 0) + H$ reaction. In particular, we show that these oscillations are produced by two overlapping resonances located near the transition state and the van der Waals well, respectively \cite{3}.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

2AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

3AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

2AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

3AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.

1AZM and ZF are supported by US DoE Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research.