Abstract Submitted for the DAMOP07 Meeting of The American Physical Society

Realization of a Magneto-Optical Trap for Cadmium Atoms¹ MARK ACTON, KATHY-ANNE BRICKMAN, MING-SHIEN CHANG, DZIM-ITRY MATSUKEVICH, FOCUS and Physics Dept., Univ. of Michigan, PAUL HALJAN, Physics Dept., Simon Fraser Univ., VANDERLEI BAGNATO, Universidade de Sao Paulo, Instituto de Fisica de Sao Carlos, CHRISTOPHER MON-ROE, FOCUS and Physics Dept., Univ. of Michigan — We report the confinement of cadmium atoms in a vapor cell magneto-optical trap (MOT). Using the closed ${}^{1}S_{0}-{}^{1}P_{1}$ transition ($\lambda=229$ nm, $\gamma=2\pi*90.9$ MHz), we are able to trap neutral cadmium atoms and examine the dependence of loss mechanisms, atomic density, and atom number on trapping parameters. This represents the trapping of a new atomic species and the shortest wavelength MOT produced to date. We anticipate that cold Cd atoms will be interesting for future studies in at least two directions: First, the ${}^{1}S_{0}-{}^{3}P$ intercombination lines ($\lambda=325$ nm) could be useful for optical cooling to very low temperatures $({}^{1}S_{0} - {}^{3}P_{1})$ and for high resolution optical spectroscopy $({}^{1}S_{0} - {}^{3}P_{0})$. Second, combining cold Cd atoms with individual laser-cooled Cd⁺ ions in a nearby ion trap may allow for studies of cold ion/neutral interactions such as charge-exchange, the transport of a charged "hole" through a gas, and perhaps the transfer of coherence from hyperfine states in the ion to pure nuclear spins in the neutral gas.

¹Supported by the National Science Foundation ITR and PIF Programs.

Mark Acton FOCUS and Physics Dept., Univ. of Michigan

Date submitted: 06 Feb 2007

Electronic form version 1.4