DAMOP07-2007-020003

Abstract for an Invited Paper for the DAMOP07 Meeting of the American Physical Society

Angle Dependent Ionization of Small Molecules¹

PAUL CORKUM, National Research Council of Canada

The ionization probability and both the direct and re-scattered photoelectron momentum spectrum are all sensitive to the angle of a molecule with respect to the laser field. We experimentally measure the sensitivity of the ionization probability to molecular alignment using H_2 the simplest molecule as well as N_2 , O_2 , and CO_2 . Concentrating on O_2 and N_2 we then demonstrate the natural quantum interference that occurs when the electron tunnels from perpendicularly aligned O_2 , contrasting it with N_2 . We show that the direct electrons preserve the symmetry of the orbital from which they tunnel, filtered through the momentum filter of the tunnel. Finally we show that the re-scattered electrons are also sensitive to molecular alignment, writing the molecular structure onto their angular distribution.

¹Research performed by: D. Pavicic, M. Meckel, D. Comtois, H. Bandulet, A. Staudte, H. Pepin, J. C. Kieffer, D. Villeneuve, R. Doerner and P. B. Corkum