Atomic data for dielectronic satellite lines and dielectronic recombination into Ne$^{5+}$ R. MANCINI, U.I. SAFRONOVA, University of Nevada, Reno — Energy levels, radiative transition probabilities, and autoionization rates for B-like neom Ne$^{5+}$ including $1s^22s^2nl$, $1s^22s2pnl$, and $1s^22p^2nl$ ($n=2-11$, $l=s,p,d,f,g,h,i,k$) states were calculated by multi-configurational Hartree-Fock method (Cowan code) and relativistic many-body perturbation theory method (RMBPT) code. Autoionizing levels above three thresholds ($1s^22s^2 1S$, $1s^22s2p 3P$, $1s^22s2p 1P$) were considered. Branching ratios relative to the first threshold and intensity factor were calculated for satellites lines and dielectronic recombination rate coefficients for the excited 190 odd-parity and 198 even-parity states. The dielectronic recombination rate coefficients including $1s^22s^2nl$, $1s^22s2pnl$, and $1s^22p^2nl$ ($n=2-11$, $l=0-7$) states were calculated. The contributions from the excited states higher than $n=11$ were estimated by extrapolation of all atomic characteristics to derive the total dielectronic recombination rate coefficient. The orbital angular momentum quantum number l distribution of the rate coefficients shows a peak at $l=5$. The total dielectronic recombination rate coefficient was derived as a function of electron temperature. The dielectronic satellite lines were also obtained.

1This work was supported by grant DE-FG52-06NA275878.