Abstract Submitted
for the DAMOP08 Meeting of
The American Physical Society

Photoionization of Fe$^{7+}$ in the 3$p$ – 3$d$ resonance energy region
M.F. GHARAIBEH, U.I. SAFRONOVA, R.A. PHANEUF, E.D. EMMONS, University of Nevada, Reno, A.L.D. KILCOYNE, A.S. SCHLACHTER, Advanced Light Source, LBNL, A. MUELLER, Justus-Liebig-Universit, I.M. SAVUKOV, Los Alamos National Laboratory — Photoionization of Fe$^{7+}$ in the energy range of 3$s$ and 3$p$ inner-shell excitations were studied using photoion spectroscopy with monochromatized synchrotron radiation. The resonance structure in the range 150 – 180 eV is attributed to \([3s^23p^63d, 3s^23p^64s] – [3s^23p^54s5s, 3s^23p^53d5s, 3s^23p^53d6s, 3s^23p^53d4d, 3s^23p^53d5d, 3s3p^63d4p]\) transitions. Relativistic many-body perturbation theory was used to evaluate multipole (M1 and E2) matrix elements to obtain lifetimes of the 3$s^23p^63d^2D_{5/2}$ and 3$s^23p^64s^2S_{1/2}$ metastable levels. These calculations started from an argonlike closed-shell Dirac-Fock potential. Matrix elements were calculated using both relativistic many-body perturbation theory, complete through second and third orders, and the relativistic all-order method restricted to single and double excitations. To reproduce resonance structure in the photoionization cross section, a large-scale COWAN calculation including about 30 configurations was used.

1Research supported by the Division of Chemical Sciences, Geosciences, and Biosciences of the U.S. Department of Energy.

U.I. Safronova
University of Nevada, Reno

Date submitted: 28 Jan 2008  Electronic form version 1.4