Abstract Submitted for the DAMOP08 Meeting of The American Physical Society

Electron Impact Excitation of Transitions in C^{+1} SWARAJ TAYAL, Clark Atlanta University — The B-spline R-matrix method in the framework of Breit-Pauli approximation is used to investigate the electron impact excitation of forbidden and allowed transitions in C^+ . An accurate description of the target wave functions has been obtained in a multiconfiguration Hartree-Fock approach with flexible nonorthogonal orbitals. The 42 fine-structure levels of the $2s^22p$, $2s2p^2$, $2s^23l$ (l = 0-2), $2p^3$, $2s^24l$ (l = 0-3), 2s2p3s and $2s^25l$ (l = 0-2) configurations have been included in the scattering calculation. A second calculation with lowest 35 levels in the close-coupling expansion has also been carried out to check channel coupling effects on collision strengths. The continuum functions have been represented by the use of B-spline basis [1]. The present cross sections for the resonance ${}^2P^o - 2s2p^2 {}^2D$, 2S and intercombination ${}^2P^o - 2s2p^2 {}^4P$ transitions are in very good agreement with the electron-energy-loss merged beams experiment. Oscillator strengths and transition probabilities for C II lines normally compare very well with previous calculation. [1] O. Zatsarinny, Comput. Phys. Commun. 174, 273 (2006).

¹This research is supported by NASA under grant NNG06GD39G from the Astronomy and Physics Research Analysis program

> Swaraj Tayal Clark Atlanta University

Date submitted: 28 Jan 2008

Electronic form version 1.4