Few-body physics with ultracold Cs atoms and molecules

STEVEN KNOOP, FRANCESCA FERLAINO, MARTIN BERNINGER, MICHAEL MARK, HANNS-CHRISTOPH NAEGERL, RUDOLF GRIMM

Inst. of Experimental Physics and Center for Quantum Physics, Univ. Innsbruck; 6020 Innsbruck, Austria — Ultracold atomic gases are versatile systems to study few-body physics because of full control over the external and internal degrees of freedom and the magnetic tunability of the scattering properties using Feshbach resonances. Here we experimentally study three- and four-body physics by investigating ultracold (30-250 nK) atom-dimer and dimer-dimer collisions with Cs Feshbach molecules in various molecular states and Cs atoms in different hyperfine states. Resonant enhancement of the atom-dimer relaxation rate is observed in a system of three identical bosons and interpreted as being induced by a trimer state, possibly an Efimov state. A strong magnetic field dependence of the relaxation rate is also observed when the atoms are transferred to a different hyperfine sublevel. For dimer-dimer collisions we have observed a suppression of the collisional loss rate.

1Funding by Austrian Science Fund and the European Commission.
2Inst. For Quantum Optics and Quantum Information, Acad. Of Sciences, 6020 Innsbruck, Austria

Steven Knoop
Inst. of Experimental Physics and Center for Quantum Physics,
Univ. Innsbruck; 6020 Innsbruck, Austria

Date submitted: 29 Jan 2008

Electronic form version 1.4