DAMOP08-2008-000195

Abstract for an Invited Paper for the DAMOP08 Meeting of the American Physical Society

Vibrational Feshbach Resonance Mechanism for Positron Annihilation on Molecules GLEB GRIBAKIN, Queen's University Belfast

Thanks to a concerted experimental [1,2] and theoretical [3,4] effort, the hypothesis of the role of molecular vibrational Feshbach resonances in providing enhanced positron annihilation rates in molecules [5], has largely been confirmed and accepted. Recent experiments have provided a wealth of information on the two crucial aspects of the resonant annihilation mechanism, namely the positron-molecule binding, and its coupling to the vibrational degrees of freedom. In small molecules with simple vibrational spectra of infrared-active modes (e.g., methyl halides), resonant annihilation is described remarkably well by a theory [4] which contains only one free parameter, the positron binding energy. Application of this theory to other molecules highlights the role of overtones and combinations (methanol), as well as infrared-inactive vibrational excitations (acetylene, ethylene, etc.). In this talk I will review current theoretical understanding of positron-molecule resonant annihilation and discuss some outstanding questions for future research.

- S. J. Gilbert, L. D. Barnes, J. P. Sullivan, and C. M. Surko, Phys. Rev. Lett. 88, 043201 (2002); L. D. Barnes, S. J. Gilbert, and C. M. Surko, Phys. Rev. A 67, 032706 (2003).
- 2. L. D. Barnes, J. A. Young and C. M. Surko, Phys. Rev. A 74, 012706 (2006).
- 3. G. F. Gribakin and P. M. W. Gill, Nucl. Instrum. and Methods B 221, 30 (2004).
- 4. G. F. Gribakin and C. M. R. Lee, Phys. Rev. Lett. 97, 193201 (2006).
- 5. G. F. Gribakin, Phys. Rev. A 61, 022720 (2000).