Abstract Submitted
for the DAMOP08 Meeting of
The American Physical Society

Tuning the UV-blue absorption and emission of CdSe & ZnS core-shell nanoparticles by laser radiation1 IGNACIO GALLARDO, KAY HOFF-MANN, KETO JOHN, The University of Texas at Austin — CdSe and ZnS core-shell nanoparticles made by LAM (Laser Ablation of Microparticles) show photoluminescence (PL) peaks in a region of wavelengths below 400nm. Control over the size and PL peak position is obtained by irradiating the nanoparticles multiple times. In LAM, microparticle powder passes through an aerosol generator and then into a laser ablation glass cell, where a laser pulse (high energy excimer laser) ablates the microparticle aerosol. Nanoparticles are formed after condensation. At this stage the nanoparticles can be covered with a second material or irradiated multiple times to change their size. The size distribution of these particles is successfully investigated with TEM (Transmission Electron Microscopy). PL blue shifts are seen as the mean size decreases. A thermodynamic numerical calculation based on evaporation models and Mie absorption during the LAM process supports the blue shifting of the PL peaks by showing a decrease in particle size as they are exposed to multiple laser irradiations.

1Center for Nano and Molecular Science and Technology and TMI

Ignacio Gallardo
The University of Texas at Austin

Date submitted: 30 Jan 2008
Electronic form version 1.4