Magnetic Trapping of Atomic Nitrogen and Cotrapping of NH
MATTHEW HUMMON, WESLEY CAMPBELL, Department of Physics, Harvard University; Harvard-MIT Center for Ultracold Atoms, HSIN-I LU, Division of Engineering and Applied Sciences, Harvard University; Harvard-MIT Center for Ultracold Atoms, EDEM TSIKATA, YIHUA WANG, JOHN DOYLE, Department of Physics, Harvard University; Harvard-MIT Center for Ultracold Atoms — We observe magnetic trapping of atomic nitrogen ($^{14}\text{N}$) and cotrapping of $^{14}\text{NH}$ ($X^3\Sigma^-$). We use buffer gas cooling to load the magnetic trap directly from a room temperature molecular beam generated by a radio-frequency plasma source. We trap approximately $1 \times 10^{11}^{14}\text{N}$ atoms at a peak density of $5 \times 10^{11}$ cm$^{-3}$ at a temperature of $\approx 550$ mK. The $1/e$ lifetime of nitrogen in the trap of $12 +5/−3$ s is limited by collisions with the helium buffer gas. This lifetime sets a limit on the inelastic rate constant for $^{14}\text{N}-^3\text{He}$ collisions of $\Gamma_{\text{in}} < 2.2 \times 10^{-16}$ cm$^3$s$^{-1}$. $^{14}\text{N}$ and $^{14}\text{NH}$ are cotrapped, with $4 \times 10^{10}$ $^{14}\text{N}$ atoms and $1 \times 10^8$ $^{14}\text{NH}$ molecules at peak densities of $n_N \approx 1 \times 10^{11}$ cm$^{-3}$ and $n_{NH} \approx 1 \times 10^8$ at a temperature of $\approx 550$ mK.