Ultracold collisions between atoms and molecules in high vibrational states: effect of the atom-atom scattering length

GOULVEN QUÉMENER, University of Nevada Las Vegas, PASCAL HONVAULT, University of Franche-Comte, JEAN-MICHEL LAUNAY, University of Rennes 1 — Recently, Bose-Einstein condensates of $^6\text{Li}_2$ and $^{40}\text{K}_2$ molecules have been produced using Feshbach resonances and Pauli blocking mechanism. In these experiments, molecules are formed in the highest vibrational state and composed by fermionic atoms, and the atom-atom scattering length is large and positive. Using a quantum-mechanical formalism based on hyperspherical coordinates, we have obtained elastic and inelastic rate coefficients for the fermionic system $^6\text{Li} + ^6\text{Li}_2$ and for the bosonic system $^7\text{Li} + ^7\text{Li}_2$ for molecule in high vibrational states [1]. We explain the Pauli blocking mechanism that occurs in the experiments, by comparing rate coefficients for a system composed of bosonic or fermionic atoms as a function of the atom-atom scattering length. [1] G. Quémener, J.-M. Launay, and P. Honvault, Phys. Rev. A 75, 050701(R) (2007).