Characterization of Molecular Dynamics in Ultrashort Laser Fields1 B. FEUERSTEIN, T. ERGLER, A. RUĐENKO, R. MOSHAMMER, J. ULLRICH, T. NIEDERHAUSEN, U. THUMM, HD TEAM2, KS TEAM3 — Reaction Microscope-based, complete, and time-resolved Coulomb explosion imaging of vibrating and dissociating D_2^+ molecules with femtosecond time-resolution allowed us to perform an internuclear distance (R-)dependent Fourier analysis of the corresponding wave packets. Our wave packet propagation calculations demonstrate that the obtained two-dimensional R-dependent frequency spectra enable the complete characterization of the wave packet dynamics and directly visualize the field-modified molecular potential curves in intense, ultrashort laser pulses, cf., Phys. Rev. Lett. \textbf{99} 153002 (2007).

1Supported by the NSF and US DoE.
2MPI fuer Kernphysik, Heidelberg
3Kansas State University