Spin-Exchange Optical Pumping of Alkali Salts1 BEN OLSEN, BRIAN PATTON, YUAN-YU JAU, WILL HAPPER, KIYOSHI ISHIKAWA2, Princeton University — Spin-Exchange Optical Pumping (SEOP) is a technique used to polarize nuclei in excess of their equilibrium limit. SEOP is achieved by optically pumping an alkali vapor which then transfers angular momentum to the nuclei of interest. We have recently hyperpolarized 133Cs nuclei in solid CsH using SEOP, achieving magnetizations more than an order of magnitude larger than the thermal equilibrium value.3 In subsequent work, we investigate the mechanisms underlying this transfer of angular momentum. By optically pumping Cs vapor with laser light resonant with several optical transitions, each yielding different nuclear and electronic spin currents to the solid, we attempt to determine the source of transferred angular momentum. Early evidence suggests both electronic and nuclear spin polarization in the vapor contribute to 133Cs nuclear polarization in the salt. The 1H polarization is also mildly affected by optical pumping. We compare these results to numerical simulations and to results from other alkali salts. Further studies are warranted to discover if polarization can be transferred to other nuclei (e.g., alkali salts) on the cell walls.

1This work was supported by the Air Force Office of Scientific Research
2Present address: Graduate School of Material Science, Hyogo, Japan
3Ishikawa et. al., Phys. Rev. Lett. 98, 183004 (2007)