2p$_{3/2}^{-1}3x^{-1}3x^{-1}4d^{-1}$ X-Ray Satellites spectra in the Lβ_2 region

SURENDRA POONIA, Research Scientist — The X-ray satellite spectra arising due to 2p$_{3/2}^{-1}3x^{-1}3x^{-1}4d^{-1}$ (x = s, p, d) transition array, in elements with Z = 42 to 90, have been calculated. While the energies of various transitions of the array have been determined by using available Hartree-Fock-Slater data on 1s$^{-1}$-2p$_{1/2}^{-1}3x^{-1}$ and 2p$_{3/2}^{-1}3x^{-1}3x^{-1}$ Auger transition energies, their relative intensities have been estimated by considering cross sections of singly ionized 2x$^{-1}$ (x = s, p) states and then of subsequent Coster-Kronig and shake off processes. The calculated spectra have been compared with the measured satellite energies in Lβ_2 spectra. Their intense peaks have been identified as the observed satellite lines. It has been established that four satellites observed in the Lβ_2 region of the X-ray spectra of various elements and named I_2^b, I_2^c, II_2 and II_2^c in order of increasing energy are mainly emitted by 2p$_{3/2}^{-1}3d^{-1}4d^{-2}$ transitions. In the present study, we report the transition assignments to the satellites I_2^b, I_2^c, II_2^b, II_2^c and II_2^c reported in the spectra of elements with Z = 42 to 52 and the satellites named I_2^b and II_2^b in the L - emission spectra of the elements of 74W to 90Th. It is observed that out of these four satellites, I_2^b can be assigned to superposition of $^3F_4-^3G_5$ and $^3F_4-^3D_3$ transitions and that this must be the most intense of all these satellites in the elements Z = 42-50. In the range of elements Z = 52 to 77, the satellite I_2^b is emitted by these transitions.