Abstract Submitted for the DAMOP08 Meeting of The American Physical Society

 $2\mathbf{p}_{3/2}^{-1}\mathbf{3x}^{-1}\mathbf{-3x}^{-1}\mathbf{4d}^{-1}$ X-Ray Satellites spectra in the $\mathbf{L}eta_2$ region SURENDRA POONIA, Research Scientist — The X-ray satellite spectra arising due to $2p_{3/2}^{-1}3x^{-1}-3x^{-1}4d^{-1}$ (x \equiv s, p, d) transition array, in elements with Z = 42 to 90, have been calculated. While the energies of various transitions of the array have been determined by using available Hartree-Fock-Slater data on $1s^{-1}-2p^{-1}3x^{-1}$ and $2p_{3/2}^{-1}$ - $3x^{-1}$, $3x^{-1}$ Auger transition energies, their relative intensities have been estimated by considering cross sections of singly ionized $2x^{-1}$ ($x \equiv s, p$) states and then of subsequent Coster-Kronig and shake off processes. The calculated spectra have been compared with the measured satellite energies in $L\beta_2$ spectra. Their intense peaks have been identified as the observed satellite lines. It has been established that four satellites observed in the $L\beta_2$ region of the X-ray spectra of various elements and named β_2^I , $\beta_2^{(b)}$, β_2^{II} and $\beta_2^{(c)}$ in order of increasing energy are mainly emitted by $2p_{3/2}^{-1}3d^{-1}-4d^{-2}$ transitions. In the present study, we report the transition assignments to the satellites β_2^I , $\beta_2^{(b)}$, β_2^{II} and $\beta_2^{(c)}$ reported in the spectra of elements with Z = 42 to 52 and the satellites named β_2^I and β_2^{II} in the L - emission spectra of the elements of ${}_{74}W$ to ${}_{90}Th$. It is observed that out of these four satellites, $\beta_2^{(b)}$ can be assigned to superposition of ${}^{3}F_4 - {}^{3}G_5$ and ${}^{3}F_4 - {}^{3}D_3$ transitions and that this must be the most intense of all these satellites in the elements Z = 42-50. In the range of elements Z = 52 to 77, the satellite β_2^I is emitted by these transitions.

> Surendra Poonia Research Scientist

Date submitted: 01 Feb 2008

Electronic form version 1.4