Abstract Submitted for the DAMOP08 Meeting of The American Physical Society

Weakly interacting Bose-Einstein condensate in a disordered optical potential T.A. CORCOVILOS, D. DRIES, J. HITCHCOCK, M. JUNKER, Y.P. CHEN², R.G. HULET, Department of Physics and Astronomy and Rice Quantum Institute, Rice University, Houston, TX 77005 — We report on experimental progress in studying the behavior of a nearly noninteracting Bose-Einstein condensate (BEC) of 7 Li atoms in a tunable disordered optical potential generated by laser speckle. We investigate the previously unexplored regime where the characteristic length scale of the disorder potential is shorter than the healing length, ξ , of the BEC. We increase ξ by using a Feshbach resonance to tune the s-wave scattering length of the atoms to nearly zero (specifically, less than the Bohr radius). Under these conditions new phenomena, such as Anderson localization, are predicted.

¹Supported by NSF, ONR, NASA and the Welch Foundation ²Current address: Purdue University, West Lafayette, IN 47907

Theodore Corcovilos Rice University

Date submitted: 01 Feb 2008 Electronic form version 1.4