Abstract Submitted for the DAMOP08 Meeting of The American Physical Society

Coherent control of entangled states of atomic ensembles SCOTT B. PAPP, KYUNG S. CHOI, HUI DENG, H. JEFF KIMBLE, Norman Bridge Laboratory of Physics, California Institute of Technology — The realization of quantum communication protocols over a scalable quantum network depends on precise control of entangled states. Recent experimental progress toward a scalable quantum network has included the demonstration of heralded entanglement creation and the distribution of entanglement amongst the nodes of a network. In our system quantum nodes are realized with a pair of atomic ensembles of laser cooled Cs atoms. We will discuss recent developments including the storage and retrieval of entanglement into and out of a quantum memory [1] and an investigation of the processes by which entanglement decays in our system [2]. [1] K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, arXiv:0712.3571v2 (2008). [2] J. Laurat, K. S. Choi, H. Deng, C.-W. Chou, and H. J. Kimble, Phys. Rev. Lett. **99**, 180504 (2007).

> Scott Papp California Institute of Technology

Date submitted: 01 Feb 2008

Electronic form version 1.4