Abstract Submitted
for the DAMOP08 Meeting of
The American Physical Society

The Topology of Chaotic Transport and Escape

JAISON NOVICK, College of William and Mary, KEVIN MITCHELL, University of California, Merced,
JOHN DELOS, College of William and Mary — Chaotic transport and escape appears in many different systems such as the escape of an asteroid from a planet’s gravitational field to the escape of ionizing electrons from hydrogen in parallel electric and magnetic fields. Numerical simulations have shown that the times to escape some region without return possess a complicated fractal structure. These fractals result from the intersection of a line of initial conditions and a homoclinic tangle, which is formed from the intersections of infinitely long stable and unstable manifolds emanating from an unstable fixed point. Our group has developed Homotopic Lobe Dynamics, a topological theory that allows one to predict subsets of the fractals seen in numerical simulations. We first show how to apply homotopy to a homoclinic tangle to obtain a set of symbols and a dynamical mapping on the symbols. A symbol and its mappings encode the evolution of an entire family of trajectories. Given a symbol and its mappings, we show how to construct a theoretical fractal. Finally, we compare a predicted fractal to one obtained from a numerical simulation of trajectories propagating in an open chaotic vase-shaped billiard.

1Supported by NSF

Jaison Novick
College of William and Mary

Date submitted: 01 Feb 2008

Electronic form version 1.4