Studies of Ultracold Strontium Atoms in an Optical Dipole Trap

A.J. TRAVERSO, Y.N. MARTINEZ DE ESCOBAR, P.G. MICKELSON, T.C. KILLIAN, Rice University — We survey recent experiments with ultracold strontium performed in our group. Trapping and cooling occurs in three stages: successive magneto-optical traps (MOTs) operating on 461 nm and 689 nm transitions of strontium, respectively, are loaded to cool atoms to a temperature of 1 µK. Finally, atoms are loaded into a far-off-resonance optical dipole trap (ODT). We examine the loading characteristics, thermalization, and lifetime of atoms held within the ODT. We also perform spectroscopy of atoms held within the ODT. During laser cooling, we are able to manipulate the energy levels of the atoms and shelve them into metastable states using 707 nm and 3 µm lasers. These experiments reveal interesting physics of ultracold strontium.

Supported by the National Science Foundation, the W.M. Keck Foundation, and the Welch Foundation.