Abstract Submitted
for the DAMOP08 Meeting of
The American Physical Society

Stable Bound States of Yb and Pr Negative Ions

A.Z. MSEZANE, Z. FELFLI, Clark Atlanta University, D. SOKOLOVSKI, The Queen’s University of Belfast, UK — Andersen et al [1] concluded, through careful experimental investigation, that the electron affinity (EA) of Yb should be less than 3 meV and the accuracy of the theoretical calculations was deemed insufficient to provide a definitive answer to whether a stable bound state of the negative Yb ion exists. Such a small EA value for Yb is suitable for quenching Rydberg states, going through the formation of a temporary negative ion by ground state atoms with low EA’s [2]. Our result obtained using the recent Regge-pole methodology [3] in which a Thomas-Fermi potential incorporates the important core-polarization potential, contradicts the conclusion in [1] by predicting a binding energy of 28 meV for the Yb\(^{\text{-}}\) ion with a d-orbital electron attachment, including a Ramsauer-Townsend minimum at 20 meV and an s-wave Wigner threshold behavior of the total elastic cross section. Results for the e\(^{\text{-}}\)-Pr scattering will also be presented and contrasted with those for e\(^{\text{-}}\)-Yb scattering.

1 Work supported by US DOE and the NSF-CREST Program.

Z. Felfli
Clark Atlanta University

Date submitted: 05 Feb 2008

Electronic form version 1.4