Intrinsic Gas-Phase Spin Relaxation of 129Xe

B.C. ANGER, M.S. SOLUM, R.J. PUGMIRE, B. SAAM, University of Utah — Hyperpolarized (HP) 129Xe produced through spin-exchange optical pumping (SEOP) techniques is useful for many NMR and MRI applications. At gas densities typical for SEOP, fluctuations in the spin-rotation and chemical shift anisotropy interactions mediated by the formation and breakup of loosely bound 129Xe-Xe molecules have recently been identified as the primary intrinsic spin relaxation mechanism, with T_1 limits as short as ≈ 5 hours for samples of pure Xe. We have shown that this relaxation mechanism can be suppressed at high magnetic fields, leading to T_1 relaxation times of ≈ 100 h at 14.1 T. Further results showed a near doubling of relaxation times with moderate temperature increases from 293 K to 393 K, implying a maximum intrinsic relaxation time of ≈ 9 h at 393 K. In the field regime practical for SEOP (2.8 mT), we observed 129Xe relaxation times of nearly 5 hours in a 1 amagat Xe sample at 393 K. These results suggest a practical, low-field, non-cryogenic storage system that will provide Xe hold times much longer than those currently available from standard cryogenic storage systems on flow-through Xe polarizers.

1This work was supported by the NSF (PHY-0134980)