Abstract Submitted for the DAMOP09 Meeting of The American Physical Society

³He Relaxation Time Measurements at \sim 400mK for the neutron electric dipole moment (nEDM) experiment¹ QIANG YE, Duke University, NEUTRON EDM TEAM — In the new neutron electric dipole moment (nEDM) experiment planned to be carried out at the SNS, the neutron storage cell will be made of dTPB-dPS (wavelength shifting material) coated acrylic and filled with superfluid ⁴He at \sim 400mK. The experiment will use the nuclear magnetic resonance technique to measure the neutron precession frequency by comparing with that of the polarized ³He using the spin-dependent nuclear process: $\vec{n} + {}^{3}\vec{H}e \rightarrow p + t + 764$ keV. The polarized ³He will also be used as a co-magnetometer to monitor in situ the magnetic field during the experiment. Understanding the relaxation mechanism of polarized ³He in the storage cell under the experimental conditions and maintaining the ³He polarization is crucial. Following our earlier study [1] of the ³He relaxation time in a dTPB-dPS coated cylindrical acrylic cell at a temperature of 1.9K in the presence of superfluid ⁴He with a magnetic holding field of 21 G, more measurements at $\sim 400 \text{mK}$ have been carried out in cylindrical and rectangular acrylic cells using a dilution refrigerator at TUNL with the magnetic holding field of ~ 7 G. Preliminary results will be presented. [1] Q. Ye et al. Physical Review A, 77:053408, 2008

¹This work is supported in part by the U.S. Department of Energy under contract number DE-FG02-03ER41231.

Qiang Ye Duke University

Date submitted: 16 Jan 2009

Electronic form version 1.4