Abstract Submitted for the DAMOP09 Meeting of The American Physical Society

Lorentz Symmetries of a Doubly Hyperbolic Phase Space FELIX

T. SMITH — The Einstein addition law of velocities implies a hyperbolic geometry for relativistic velocity and momentum space. The simplest model of an open, expanding universe implies a hyperbolic geometry for position space. It is natural to investigate the kinematics of a phase space combining hyperbolic geometries in both the velocity-momentum manifold $H(3)_{vel}$ and the position manifold $H(3)_{pos}$. Each of these sustains its own Lorentz subgroup, $L_{vel} = O(1,3)_{vel}$ and $L_{pos} = O(1,3)_{pos}$. These form a direct product group $L^2 = L_{vel} \times L_{pos}$, a 12-parameter group, represented by 8 ×8 matrices. Among its operators are a subgroup L_{boost} of Lorentz velocity boosts that operate on the elements of L_{vel} by Einstein addition and on those of L_{pos} by the Lorentz transformation. There is also a conjugate subgroup L_{shift} of hyperbolic translational shifts that operate on the elements of L_{pos} translationally, and on those of L_{vel} to describe the Hubble effect of distance on velocity vectors. The structure, symmetries, Lie algebra and important operators and quantum numbers of the resulting representation of L^2 will be reported. (See also F.T. Smith, Ann. Fond. L. de Broglie, 30, 179 (2005).)

Felix T. Smith SRI International

Date submitted: 20 Jan 2009 Electronic form version 1.4