Ultra-cold electron collisions with the N$_2$H radical1 BREN DAN M. MCLAUGHLIN, School of Mathematics and Physics, Queen’s University Belfast, ROBERT C. FORREY, Department of Physics, Penn State University, Berks Campus — Ultra-cold electron collisions with the N$_2$H radical are presented. Potential energy curves for both the neutral N$_2$H and anion N$_2$H$^-$ molecules are calculated as a function of the N$_2$ - H bond length in the C$_s$ symmetry point group, for perpendicular, colinear and bent geometry using a CAS-CI approximation. Ultra-cold electron scattering from the N$_2$H molecule are performed with the R- matrix method using a multi-state close-coupling approach to determine the scattering cross-sections as a function of the colliding electron energy. The autoionization linewidth (Γ) and resonance energies found near threshold in the elastic scattering cross sections are determined from the eigenphase sums as a function of stretching of the N$_2$ - H bond length, where the N$_2$ molecule is fixed at its equilibrium geometry. A complex potential is then constructed from the resonance parameters and used in the heavy particle dynamical calculations to determine the low energy electron detachment cross sections and rates. Further details will be presented at the meeting.

1Supported by NSF grant PHY-0554794.