Abstract Submitted for the DAMOP09 Meeting of The American Physical Society

Computational efficiences for calculating rare earth f^n energies¹ DONALD R. BECK, Physics Department, Michigan Technological University — Recently², we have used new computational strategies to obtain wavefunctions and energies for Gd IV $4f^7$ and $4f^65d$ levels. Here we extend one of these techniques to allow efficent inclusion of $4f^2$ pair correlation effects using radial pair energies obtained from much simpler calculations³ and angular factors which can be simply computed⁴. This is a re-vitalization of an older idea⁵. We display relationships between angular factors involving the exchange of holes and electrons (e.g. f^6 vs f^8 , $f^{13}d$ vs fd^9). We apply the results to Tb IV and Gd IV, whose spectra is largely unknown, but which may play a role in MRI medicine as endohedral metallofullerenes (e.g. Gd₃N-C₈₀⁶). Pr III results are in good agreement (910 cm⁻¹) with experiment. Pu I $5f^2$ radial pair energies are also presented.

¹Supported by the National Science Foundation.

²D. R. Beck and E. J. Domeier, Can. J. Phys. Walter Johnson issue, Jan. 2009.
³e.g. K. Jankowski *et al.*, Int. J. Quant. Chem. **XXVII**, 665 (1985).
⁴D. R. Beck and C. A. Nicolaides, Excited States in Quantum Chemistry, C. A. Nicolaides and D. R. Beck (editors), D. Reidel (1978), p. 105ff.
⁵I. Oksuz and O. Sinanoglu, Phys. Rev. **181**, 54 (1969).

⁶M. C. Qian and S. N. Khanna, J. Appl. Phys. **101**, 09E105 (2007).

Donald R. Beck Physics Department, Michigan Technological University

Date submitted: 21 Jan 2009

Electronic form version 1.4