Abstract Submitted for the DAMOP09 Meeting of The American Physical Society

Atomic mass measurements for neutrino mass¹ MATTHEW RED-SHAW, BRIANNA MOUNT, EDMUND MYERS, Florida State University — As usually understood, observation of neutrinoless double-beta-decay implies that neutrinos are their own antiparticles (Majorana particles), while measurements of the decay rate, or limits on the rate, provide information on absolute neutrino mass. Large-scale neutrinoless double-beta-decay detectors, proposed or under development, such as EXO, CUORE, GERDA, MAJORANA, etc. should be sensitive to a linear combination of neutrino masses, the "effective Majorana mass of the electron neutrino", below 0.1 eV/c^2 . The signature of neutrinoless double-beta decay is a sharp peak in the total electron-energy spectrum at the Q-value of the decay – the mass-energy difference between the parent and daughter atoms. Using one or two multiply-charged ions in a Penning trap, we have now measured the atomic masses of 136 Xe, 130 Te, 130 Xe, 76 Ge, 76 Se to a fractional precision of $2 \ge 10^{-10}$ or better, corresponding to Q-values with uncertainties below 25 eV. This is more than sufficient precision for the proposed large-scale experiments. Progress on mass measurements of ⁷⁴Ge and ⁷⁴Se, relevant to resonance-enhanced neutrinoless double-electron capture in 74 Se, will also be reported.

¹Support from NSF and NIST

Edmund Myers Florida State University

Date submitted: 22 Jan 2009

Electronic form version 1.4