Atomic masses of the alkalis, oxygen isotopes, and the dipole of a triatomic ion1 BRIANNA MOUNT, MATTHEW REDSHAW, EDMUND MYERS, Florida State University — By measuring cyclotron frequency ratios of multiply charged ions simultaneously trapped in a Penning trap we have obtained improved atomic masses for 39,41K, 85,87Rb and 133Cs. Our results for Rb and Cs have application to ongoing measurements of \hbar/m (alkali) for the fine-structure constant. We have also measured the masses of 17,18O, with application to an isotope-independent global fit of precision ro-vibrational molecular spectroscopic data of carbon monoxide [1]. By measuring cyclotron frequency shifts due to polarizability, we have also measured the dipole moment of the triatomic molecular ion HCO+. [1] H.S.P. Mueller, et al., unpublished.

1Support from NSF and NIST

Brianna Mount

Date submitted: 22 Jan 2009 Electronic form version 1.4