Strong Field Ionization of Ne$^{+}$($n<3$) for an Ultrafast, 400 nm Laser Field

BRUCE L. WEN, NAGITHA EKANAYAKE, JANE WAESCHE, SAMANTHA WHITE, ADAM WATTS, TEDDY STANEV, BARRY C. WALKER,
University of Delaware — Total ionization yields are reported for neon (Ne$^+$ to Ne$^{3+}$) at intensities from 10^{14} W/cm2 to 10^{17} W/cm2 for a 400 nm laser field. Sequential ionization processes are modeled by tunneling ionization and shown to be accurate within a factor of two near saturation for Ne$^+$ and Ne$^{2+}$. Non-sequential multi-electron ionization is observed for the ionization yield of Ne$^{2+}$ and Ne$^{3+}$. The ratio of ion yields from 800 nm and 400 nm laser fields for neon charge states for Ne$^{2+}$ and Ne$^{3+}$ show non-sequential ionization for a 400 nm laser field is different when compared to that for an 800 nm laser field. A semi-classical, 3D relativistic rescattering model is compared to the data.

1This work is supported by the National Science Foundation (Grants No.0757953).

Bruce L. Wen
University of Delaware

Date submitted: 23 Jan 2009