Investigation of Charge Transfer in Low Energy $D_2^+ + H$ Collisions using Merged Beams

V.M. ANDRIANARIJAONA, J.J. RADA, Pacific Union College, Angwin, California, 94508, R. REJOUB, C.C. HAVENER, Oak Ridge National Lab, Oak Ridge, TN 37831-6372 — The hydrogen - hydrogen(deuterium) molecular ion is the most fundamental ion-molecule two-electron system. Charge transfer proceeds through dynamically coupled electronic, vibrational and rotational degrees of freedom. Using the ion-atom merged-beams apparatus at Oak Ridge National Lab we have measured absolute charge transfer cross sections for $D_2^+ + H$ from keV/u collision energies where the collision is considered “ro-vibrationally frozen” to meV/u energies where collision times are long enough to sample vibrational and rotational modes. The molecular ions are extracted from an ECR ion source with a distribution of ro-vibrational states. The measurements benchmark high energy theory (Errea et al., NIMB 235, 362 (2005) and vibrationally specific adiabatic theory (Krstic PRA 66, 042717 (2002)).

Research supported by the Office of Fusion Energy Sciences and the Office of Basic Energy Sciences, U.S. DOE, Contract No. DE-AC05-00OR22725 with UT-Battelle, LLC.

Charles Havener
Oak Ridge National Lab

Date submitted: 23 Jan 2009