Abstract Submitted for the DAMOP09 Meeting of The American Physical Society

Neutral Atom Lithography Using a Bright Metastable Helium Beam¹ CLAIRE ALLRED, JASON REEVES, CHRIS CORDER, HAROLD MET-CALF, Stony Brook University — We have performed neutral atom lithography using a bright beam of metastable $2^{3}S_{1}$ Helium (He^{*}) that is collimated with the bichromatic force, followed by three optical molasses velocity compression stages. Because bichromatic collimation makes such an intense He^{*} beam, our exposure time is measured in minutes instead of hours. We have exploited the focusing and channeling of the He^{*} beam into lines by the dipole force the atoms experience while traversing a standing wave of $\lambda = 1083$ nm light tuned 500 MHz below the $2^{3}S_{1} \rightarrow 2^{3}P_{2}$ transition. Focused He^{*} atoms damage the molecules of a self assembled monolayer (SAM) of nonanethiol by depositing their 20 eV of internal energy on its surface. The undisturbed SAM then protects a 200 Å layer of gold that has been evaporated onto a prepared Silicon wafer from a wet chemical etch. Samples created with this method have an edge resolution of 63 nm that was observed using an atomic force microscope. The lines are separated by $\lambda/2$ and cover the entire exposed length of the substrate, about 3 mm. They are about 3 mm long, corresponding to about twice the beam waist of the laser standing wave. Thus there are $\sim 6 \times 10^3$ lines of length $\sim 1500\lambda$. These results agree with our numerical simulations of the experiment.

¹Supported by ONR and Dept. of Education

Harold Metcalf Stony Brook University

Date submitted: 23 Jan 2009

Electronic form version 1.4