Abstract Submitted for the DAMOP09 Meeting of The American Physical Society

Experimental Progress on the NIST ²⁷Al⁺ Optical Clock CHIN-WEN CHOU, DAVID B. HUME, JEROEN C.J. KOELEMEIJ¹, TILL ROSEN-BAND, JAMES C. BERGQUIST, DAVE J. WINELAND, National Institute of Standards and Technology — A recent measurement of the frequency ratio between single-ion optical clocks based on ²⁷Al⁺ and ¹⁹⁹Hg⁺ at NIST showed a combined statistical and systematic uncertainty of 5.2×10^{-17} [1]. Here we report progress on improving both the accuracy and stability of the ${}^{27}Al^+$ optical clock. We have developed a new trap and laser systems that enable the use of ${}^{25}Mg^+$ for sympathetic cooling and clock-state detection of ²⁷Al⁺. These developments should reduce time-dilation shifts caused by harmonic motion of the ions and thus lower the dominant systematic uncertainty below 10^{-17} . In the new clock apparatus we have demonstrated spectroscopy of the ${}^{27}\text{Al}^+$ ${}^{1}\text{S}_0$ to ${}^{3}\text{P}_0$ transition with a quality factor of $Q = 3.5 \times 10^{14}$ and simultaneously a contrast approaching unity. In addition, we have developed techniques for the sympathetic laser cooling and quantum logic spectroscopy of multiple aluminum ions with the goal of further improving measurement stability [2]. *supported by ONR and NIST [1] T. Rosenband et al., Science **319**, 1808 (2008) [2] D. B. Hume et al., Phys. Rev. Lett. **99**, 120502 (2007)

¹Present address: Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

Chin-wen Chou National Institute of Standards and Technology

Date submitted: 27 Jan 2009

Electronic form version 1.4