Abstract Submitted
for the DAMOP09 Meeting of
The American Physical Society

Theoretical Studies of Dissociative Recombination1 D.O. KASHINSKI, R.F. MALEND, A.P. HICKMAN, Lehigh University, D. TALBI, Université Montpellier II — We are currently investigating the dissociative recombination (DR) of electrons with the molecular ions N$_2$H$^+$ and and C$_3$H$_3^+$. These ions exist in the interstellar medium, and accurate DR rate constants are needed for astrophysical models. We are performing large scale electronic structure calculations of the excited-state potential surfaces of N$_2$H necessary to treat the process $e^- + N_2H^+ \rightarrow N_2 + H$ or $N + NH$. The work is based on using the block diagonalization method to determine diabatic potential curves. The dissociating curve that governs DR is then easily identified, and off-diagonal coupling terms can be used to determine the autoionization width Γ that is essential for a dynamics calculation. The status of the calculations will be presented at the conference. We have also investigated the normal modes of the molecular ion C$_3$H$_3^+$. We expect that energy flow into and out of the vibration of a single CH bond may influence the overall DR dynamics, and we account for this effect using an appropriate quantum mechanical wave function for the initial state.

1Work supported by NSF and the TeraGrid.

David O. Kashinski
Lehigh University

Date submitted: 26 Jan 2009
Electronic form version 1.4