Abstract Submitted for the DAMOP09 Meeting of The American Physical Society

A buffer-gas cooled BEC of metastable 4 He 1 S. CHARLES DORET, COLIN B. CONNOLLY, Harvard-MIT Center for Ultracold Atoms; Dept. of Physics, Harvard University, WOLFGANG KETTERLE, Harvard-MIT Center for Ultracold Atoms; Dept. of Physics, MIT, JOHN M. DOYLE, Harvard-MIT Center for Ultracold Atoms; Dept. of Physics, Harvard University — We report the first creation of a BEC (of metastable helium, 4 He *) using buffer-gas cooling, without the use of laser cooling. 10^{11} 4 He * atoms are produced via RF-discharge and magnetically trapped at an initial temperature of 400 mK in an anit-Helmholtz quadrupole field. These atoms are evaporatively cooled into the ultracold regime and transferred to a tightly confining superconducting QUIC trap with trap frequencies $\omega_{axial} = 2\pi$ x 210 Hz and $\omega_{radial} = 2\pi$ x 2500 Hz. Further cooling is achieved by driving transitions with resonant RF radiation. The transition temperature is reached at $\sim 5~\mu\text{K}$ with approximately 10^6 atoms. The cloud is detected via phase-contrast imaging at 1083 nm, either in-situ or in time-of-flight.

¹Supported by the NSF through the Harvard-MIT Center for Ultracold Atoms.

S. Charles Doret Harvard-MIT Center for Ultracold Atoms, Dept. of Physics, Harvard University

Date submitted: 02 Apr 2009 Electronic form version 1.4