Abstract Submitted for the DAMOP09 Meeting of The American Physical Society

An Electron Electric Dipole Moment Search in the ${}^{3}\Delta_{1}$ Ground State of Tungsten Carbide Molecules JEONGWON LEE, AARON LEAN-HARDT, Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA — We report on progress towards constructing and characterizing a continuous tungsten carbide (WC) molecular beam for an electron electric dipole moment (EDM) search¹. Tungsten atoms are evaporated from a resistively heated filament and tungsten carbide molecules are formed through a reaction with methane: W + CH₄ \rightarrow WC + 2H₂. WC has a ${}^{3}\Delta_{1}$ ground state with its two valance electrons in a $\sigma\delta$ molecular orbital configuration^{2,3,4}. This molecular structure has several unique advantages for an electron EDM search and arises in other diatomic species such as HfF^{+5,6}, ThF^{+5,7}, and ThO^{7,8}.

¹J. Lee et al., Atomic Physics XXI, 190 (2008).
²K. Balasubramanian, J. Chem.Phys.112, 7425 (2000).
³S. M. Sickafoose et al., J. Chem. Phys. 116, 993 (2002).
⁴D. Rothgeb et al., J. Chem.Phys.129, 114304 (2008).
⁵http://jilawww.colorado.edu/bec/CornellGroup/.
⁶E.R.Meyer et al., Phys. Rev. A 73, 062108 (2006).
⁷E. R. Meyer et al., Phys. Rev. A 78, 010502 (2008).
⁸A. C.Vutha et al., Atomic Physics XXI, 191 (2008).

Aaron Leanhardt Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

Date submitted: 27 Jan 2009

Electronic form version 1.4