Abstract Submitted for the DAMOP09 Meeting of The American Physical Society

Spectroscopy of a singly trapped ²⁵Mg⁺ ion JASON NGUYEN, BRIAN KING, McMaster University — We will present and discuss results from a measurement of the linewidth and hyperfine A constant of the ²P_{1/2} excited state in ²⁵Mg⁺. We trapped the ion in a linear Paul trap and laser cooled it using the ²S_{1/2} \rightarrow ²P_{3/2} transition. We optically pumped the ion into the F=3, m_F=-3 ground state and weakly probed it with a tuneable fiber laser that was scanned to drive the ion from the ground state to the F=3 and F=2 manifolds of the ²P_{1/2} state. The final state of the ion was determined by by counting fluorescence (or the lackthereof) from the ²S_{1/2}(F=3,m_F=-3) \rightarrow ²P_{3/2}(F=4,m_F=-4) cycling transition with a photomultiplier tube. Using this method we measured the linewidth with negligible Doppler contributions at different laser intensities and varying magnetic fields.

> Jason Nguyen McMaster University

Date submitted: 24 Jan 2009

Electronic form version 1.4