Abstract Submitted for the DAMOP09 Meeting of The American Physical Society

Cavity enhanced absorption spectroscopy using a broadband prism cavity and a supercontinuum source PAUL S. JOHNSTON, KEVIN K. LEHMANN, Department of Chemistry, University of Virginia — We report the design and construction of a cavity enhanced absorption spectrometer using broadband Brewster's angle prism retroreflectors and a spatially coherent 500 nm to >1.75 μ m supercontinuum excitation source. Using prisms made from fused silica an effective cavity reflectivity of >99.99% at 1.064 μ m was achieved. A proof of principle experiment was performed by recording the cavity enhanced absorption spectrum of the weak b-X (1 \leftarrow 0) transition of molecular oxygen at 14529 cm⁻¹ and the fifth overtone of the acetylene C-H stretch at 18430 cm⁻¹. CCD frames were integrated for 150 sec and 30 sec, with 3 frames (each 100 cm⁻¹ wide) and 1 frame (266 cm⁻¹ wide) required to observe the O₂ and C₂H₂ spectra, respectively. A rms noise equivalent absorption (α_{min}) of 7.21x10⁻⁸ cm¹Hz^{1/2} and 1.28x10⁷ cm⁻¹Hz^{1/2} with full width half maximum line widths of 0.18 cm⁻¹ and 0.44 cm⁻¹ was achieved for the molecular oxygen band and acetylene overtone.

Paul S. Johnston Department of Chemistry, University of Virginia

Date submitted: 26 Jan 2009 Electronic form version 1.4