Simulating bosons in magnetic field with photonics

MOHAMMAD HAFEZI1, Joint Quantum Institute, MIKHAIL LUKIN, EUGENE DEMLER, Harvard University, EDO WAKS2, JACOB TAYLOR3, Joint Quantum Institute — We propose a 2D photonic system where the dynamics of photons are analogous to charged bosons in a magnetic field. We show that a magnetic field can be ‘simulated’ for photons without using a magnetic field or any time-reversal symmetry breaking mechanism. We apply a technique to probe transport properties of such systems. In particular, the underlying energy spectrum is manifested in the transmission and reflection coefficients in form of a Hofstadter butterfly. We also discuss the effect of loss in such systems and investigate the system’s robustness to impurities.

1University of Maryland
2University of Maryland/NIST
3University of Maryland/NIST

Mohammad Hafezi
Joint Quantum Institute

Date submitted: 16 Jan 2010