Robust control of nuclear spins in diamond

LILIAN CHILDRESS, BENJAMIN SMELTZER, Bates College — Isolated nuclear spins offer a promising building block for quantum information processing systems, but their weak interactions often impede preparation, manipulation, and detection. Hyperfine coupling to a proximal electronic spin can provide a polarization and readout mechanism and enhance manipulation and interaction speed. Using the electronic spin of the nitrogen-vacancy center as an intermediary, we demonstrate robust initialization, fast manipulation, and direct optical readout of 13C, 14N, and 15N nuclear spins in diamond. These results pave the way for nitrogen nuclear spin-based architectures in isotopically purified diamond.

1Supported by Research Corporation and Bates College.