Abstract Submitted for the DAMOP10 Meeting of The American Physical Society

Positron binding to molecules¹ C.M. SURKO, J.R. DANIELSON, J.J. GOSSELIN, University of California, San Diego — Positron annihilation on molecules as a function of incident positron energy exhibit vibrational Feshbach resonances (VFR).² The energy differences between the vibrational modes and the VFR provide a measure of the positron-molecule binding energy, ϵ_b . Measurements of ϵ_b for 30 molecules are now available from this procedure and from comparison with theoretical spectra in the case of very small binding energies.² The dependence of ϵ_b on molecular parameters can be expressed as $\epsilon_b = 12.4(\alpha + 1.6\mu + 2.4N_{\pi} - 5.6)$ [meV], where α is the molecular dipole polarizability, μ is the permanent dipole moment, and N_{π} is the number of π bonds in aromatic molecules.³ Insights into chemical trends from this analysis will be discussed. A key outstanding goal is to measure ϵ_b for molecules that are sufficiently small and simple that ϵ_b can be calculated theoretically. The empirical formula is used to identify candidate molecules. New measurements of ϵ_b for CS₂ (predicted $\epsilon_b \gtrsim 40$ meV) will be discussed.

James Danielson UCSD

Date submitted: 20 Jan 2010 Electronic form version 1.4

¹Work supported by NSF grant PHY 07-55809.

²J. A. Young and C. M. Surko, *Phys. Rev. A* **77**, 052704 and **78**, 032702 (2008).

³J. R. Danielson, J. A. Young, and C. M. Surko, J. Phys. B **42**, 235203 (2009).