Miniature, Monolithic Ultra High Vacuum Cells for BEC Applications

STERLING MCBRIDE, JOEY MICHALCHUK, Sarnoff Corporation, DANA ANDERSON, EVAN SALIM, KAI HUDEK, University of Colorado at Boulder — We have developed a miniature, monolithic ultra high vacuum cell with integrated atom source, gas and atom getters, ion pump and atom chip for applications in cold atom systems. The vacuum cell is a planar, multi-chamber system, fabricated on a single substrate and arranged to spatially separate a 2D MOT high pressure region containing the atom source, a 3D MOT region and a UHV atom chip region for BEC production. The chambers are fluidically connected by micro-channel structures to provide differential pumping between chambers. The vacuum cell is fabricated using novel planar batch fabrication techniques, which enables miniaturization, permits high bake-out temperature up to 300 °C, shows pressure below 10^{-10} Torr, and allows operation from room temperature to 300 °C. Experiments demonstrate the production of a double MOT in the 2D and 3D MOT regions. Applications include portable and transportable BEC systems for applications in atom interferometry, inertial navigation systems and atomic clocks.

1Supported by DARPA DSO under the gBECi Program.